

Year 11 Mathematics Specialist 1,2 Test 4 2021

Section 1 Calculator Free Trigonometry

STUDENT'S NAME

DATE: Friday 30 July

TIME: 35 minutes

MARKS: 39

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

Given $\tan \theta = \frac{3}{7}$ and $180^\circ \le \theta \le 270^\circ$, determine

(a) the exact value of $\sin \theta$

(b) the exact value of $\cos\frac{g}{2}$

[3]

[2]

2. (10 marks)

(a) Express $\sqrt{3}\cos x + \sin x$ in the form $R\sin(x+\alpha)$ for α , an acute angle in radians. [4]

(b) Determine the minimum value of the expression in (a) and determine the smallest positive value of x for which this occurs. [3]

(c) Hence or otherwise, solve the equation $\sqrt{3}\cos x + \sin x = 1$ for $0 \le x \le 2\pi$. [4]

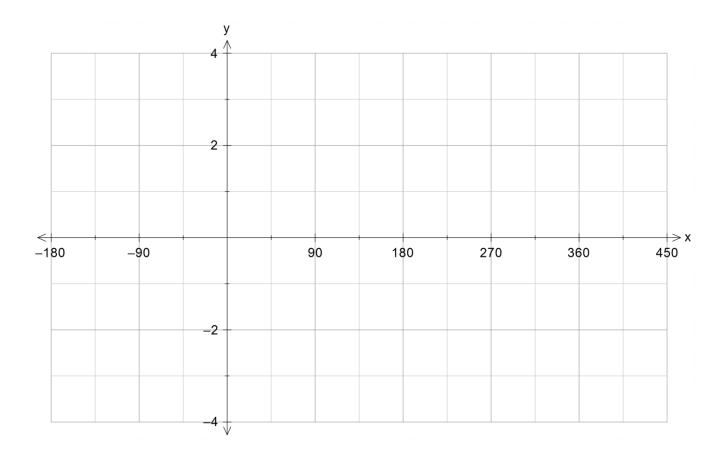
3. (8 marks)

(a) Prove
$$\frac{1-\cos 2\vartheta + \sin 2\vartheta}{1+\cos 2\vartheta + \sin 2\vartheta} = \tan \vartheta$$
 [4]

(b) Using the result of (a), show $\tan 15^\circ = 2 - \sqrt{3}$

[4]

4. (5 marks)


If $(\sin A + \cos B)^2 + (\cos A + \sin B)^2 = 3$, determine two possible values for the angle (A + B)where $0 \le (A + B) \le 2\pi$.

5. (6 marks)

Solve
$$0.5 \sec(2\vartheta - \frac{\pi}{3}) = 1$$

6. (4 marks)

Sketch the graph of $y = -2\csc(x - 45^\circ)$ on the axes below.

Year 11 Mathematics Specialist 1,2 Test 4 2021

Section 2 Calculator Assumed Trigonometry

STUDENT'S NAME

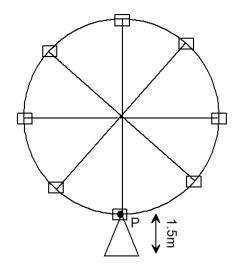
DATE: Friday 30 July

TIME: 15 minutes

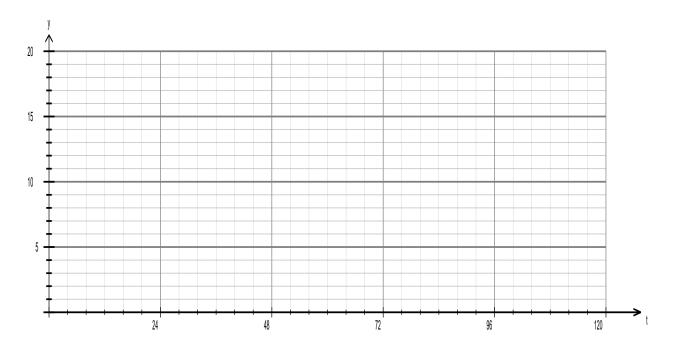
MARKS: 17

INSTRUCTIONS:

Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

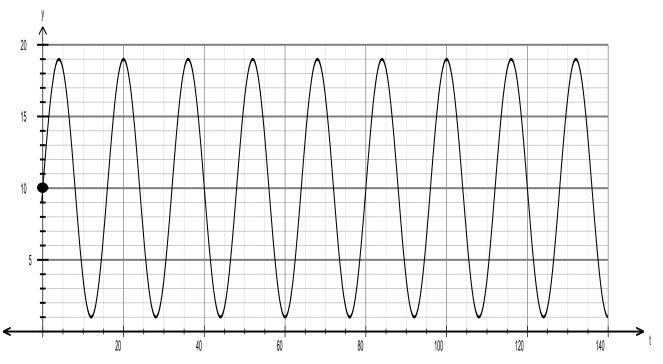

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

7. (5 marks)


Prove $\frac{1 + \cot \alpha}{\csc \alpha} - \frac{\sec \alpha}{\cot \alpha + \tan \alpha} = \cos \alpha$

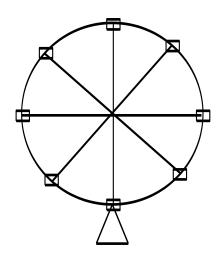
8. (12 marks)

The height above ground of a person sitting in a cart on a Ferris Wheel can be modelled by a trigonometric function.



- (a) Paulo is sitting on a chair in a Ferris Wheel of radius 8 m. His starting position is 1.5 m above ground as shown in the diagram above. The Ferris Wheel moves around anticlockwise, at a constant velocity, one revolution every 24 seconds.
 - (i) Draw a graph representing how Paulo's height changes over time each [3] revolution, given t is in seconds and y is Paulo's height in metres.

(ii) Determine the maximum height reached by Paulo and the times this occurs if the Ferris Wheel stops after 2 minutes. [3]


(b) The graph below shows Matia's height above ground over time when sitting in a cart of a different Ferris Wheel to Paulo. This Ferris Wheel also moves around anticlockwise.

Matia's height above ground over time is modelled by the equation $y = a \sin bt + c$ where y is Matia's height above the ground in m, at time t, secs and a, b and c are constants.

(i)	What is the radius of this Ferris Wheel?	[1]

- (ii) Determine the time taken for one revolution. [1]
- (iii) Determine the value of a, b and c. [3]
- (iv) On the Ferris Wheel below, indicate Matia's starting position. [1]

